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Abslracl : A conceptually simple enandoselective Il-srcp synthesis of (+)-biotin from L-cysteine 
is reported based upon an intramolecular I,3-dipolar cycloaddirion sequence involving 
(i) eliminahon of bromide 8 to the et&cyclic thkwnol ether 9, (ii) thermolysis of the ene carbamoyl 
aside 9 to the exocyclic thioenol ether 10. Both the synthesis of8 and &final transformation of 10 
into (+)-biotin are based upon liter-e precedents. 

Ever since the discovery of its fundamental role as a cofactor in naturally occurring carboxylations 

(+)-biotin has been a favorite target for total synthesis. t The importance of biotin in human nutrition and animal 

health has further stimulated the development of potential commrcial routes to synthetic vitamin.25 To the best 

of our knowledge the 1949 Goldberg and Stembach 14-step approach involving an intermediate resolution with 

possible recycling,6 still remains nowadays unchallenged in terms of economical total synthesis. Indeed, all 

later enantioselective routes to (+)-biotin required sequences of at least 12 steps.7*8 This is somewhat 

surprising in view of the apparent uncomplicated structure of biotin which basically consists of an all-cis 

substituted 2-alkyl-3,4_diaminothiophane. Herein we wish to report an enantloselective route to (+)-biotln 

which features conceptual simplicity and novelty, yet still lacks the brevety (14 steps are required from 

L-cysteineg that should characterize any efficient alternative to the 1949 synthesis. 

(+)-biotin 

As shown in scheme 1, the synthesis centers around the thermal intramolecular 1,3-dipolar 

cycloaddition of a carbamoylazide onto a five-membered thioenol ether (1).tO.tt.l2 Both because of its strained 

tricyclic nature and because of the presence of the electron withdrawing amide substitution at N, the resulting 

triazoline adduct IJa is expected to ring fragment readily to the betaine intermediate IIb. Three reaction products 

can be expected from the further loss of nitrogen from the betaine III, : (a) aziridine In; (b) imidaxolidone V 

via 1,Zhydride shift to IV and tautomerization; (c) thioenol ether VII via sulfur assisted nitrogen expulsion to 

VI followed by proton transfer. Especially V and VII ate potential precursors ot biotin. In both cases catalytic 

hydrogenation is known to provide the required all-cis configuration of biotin.t3-t4 Finally, we note that the 

required absolute configuration of (+)-biotin is stereospecifically induced in both cases by the sole stereogenic 

center in I. 
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Scheme 1 

The synthesis of the required cycloaddition precursor 9 is outlined in scheme 2 and is based on the 

known conversions of (i) L-cysteine into aldehyde 1 and (ii) the transformation of the latter into the 

hydrobromide salt 4.15 The synthesis of 4 was part of an original study for the synthesis of (+)-biotin by 

Confalone et al. which was based on the remarkable and stereospecific conversion of (Z)-olefin 2 into bromide 

3.l5b The analogous bromide, but epimeric at C-2, was obtained from the corresponding (E)-alkene and 

eventually transformed into (+)-biotin. It occurred to us that bromides such as 7 or 8, useless in terms of the 

above strategy, possess the required stereochemistry for facile B2 elimination to the required endocyclic A2s3- 

bond as present in 9. 

In close analogy with the synthesis of 4. tSu the aldehyde 1, available in 4 steps from Lcysteine,tSh 

was subjected to Wittig oletination. followed by diaxomethane to ester !I (75 96 combined yield). The oxidative 

cyclization rearrangement of (Z)-alkene 5 (bromine, 1 eq water, chloroform) gave the bromourethane 6 in 

65 % yield. After removal of the urethane protective group (hydrobromic acid, acetic acid, 20 hrs, 85 % 

yield),tsb the aminobromide hydrobromide 7 was converted to the N-benzylcarbamoyl azide 816 via : 

(i) reductive amination (benxaldehyde; magnesium sulfate, dichlotomethane to the imine, followed by reduction 

with sodium cyanoborohydride at pH 5; 76 46 yield); (ii) introduction of the acylaxide (phosgene, followed by 

sodium axide in acetone-watec 71 % yield).17 

As expected, the u&-E2 elimination of hydrogen bromide from 8 (DBU in mfluxing tetrahydrofuran) led 

to the dihydrothiophene 916 (95 % yield). Thermolysis of the latter in dichloromethane at 150°C (autoclave, 

3 hrs)ls gave thioenol ether IO16 as a 3:2 mixture of E:Z alkenes (78 % isolated yield).19 Catalytic hydrogena- 
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(a) [Ph3P(CH2)$ZOOHlBr. 2 q LDA, THF, r.t., 1 h (75 96); (b) CHZNZ, EtzO. 0“C (99 5%); (c) Brz, 
CHCl3. 1 q H20, r.t., 20 min (65 9b); (d) HBr, HOAc. 20 h. dark (85 %); (e) PhCHO, NaB(CN)Hs, 
THF, Hfl pH = 4. r.t., 3 h (76 %); (f) phosgene. PVP, CH2Cl2, OOC; NaN3. acetone, HzO. r.t. (71%); 
(g) DBU, THF, reflux, 12 h (95 %); (h) autoclave, CH2C12, 150°C. 3 h (78 %); (i) Pd(OIQ-C, H2 
4 atm, EtOAc, r.t., 1 h (95 %); (j) HBr 48 46, reflux, 2 h to (+)-biotin (85 %). 

Scheme 2 

tion of the latter mixture (palladium hydroxidem on carbon, 4 arm, ethyl acetate) led stereoselectively to the all- 

cis substituted 1116 (95 % yield),Sc which was deprotected by treatment with aqueous hydrobromic acid 

@flux, 2 hrs)21 to yield (+)-biotin (85 % yield) which was found identical in every respect with authentic 

material.p 

Among previous examples of similar cycloaddition-rearrangement sequences we note : (i) the 

intramolecular cycloaddition of N-benzyl-N-ally1 carbamoylazide which led to the imidazolidone (path b);23 

(ii) the intramolecular cycloaddition of an acylazide onto a a&unsaturated butenolide which led to aziridine 

formation presumably via nitrene addition. 24 Although in our case direct nitrene addition to III, followed by 

opening of the aziridine ring (path d) cannot be excluded, path c is probably preferred : the intramolecular mode 

foxces the electronpoor azide (LUMO) and the electronrich thioenol ether (HOMO) to combine to form a unique 

triazoliie in which tbe sulfur is ideally placed to dii the fragmentation of the triamline. 

The synthesis as it presently stands is certainly too long to be of economical value. Yet the simplicity of 

the 3-step transformation of 9 into (+)-biotin warrants further investigations into efficient mutes for 9. 

v. F. Deroose is indebted to the National Fund for Scientific Research for a position as 
Research Assistant. The Fund and the “Ministerie voor Wetenschapsbeleid” are thanked for financial support. 
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